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Phase separation in a homogeneous shear flow: Morphology, growth laws, and dynamic scaling
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We numerically investigate the influence of a homogeneous shear flow on the spinodal decomposition of a
binary mixture by solving the Cahn-Hilliard equation in a two-dimensional geometry. Several aspects of this
much studied problem are clarified. Our numerical data show unambiguously that, in the shear flow, the
domains have on average an elliptic shape. The time evolution of the three parameters describing this ellipse
is obtained for a wide range of shear rates. For the lowest shear rates investigated, we find the growth laws for
the two principal axisR, (t) ~const, R(t) ~t, while the mean orientation of the domains with respect to the
flow is inversely proportional to the strain. This implies that when hydrodynamics is neglected, a shear flow
does not stop the domain growth process. We also investigate the possibility of dynamic scaling, and show that
only a nontrivial form of scaling holds, as predicted by a recent analytical approach to the case of a noncon-
served order parameter. We show that a simple physical argument may account for these results.
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[. INTRODUCTION neither at the experimental leviee, e.g., the opposite con-
clusions of Refs[7] and[11]) nor at the numerical level,

The study of phase ordering kinetics has a long historywhere powerful algorithms are needed to deal with hydrody-
[1-3]. The canonical example is the coarsening process folnamics correctly. At present, this limits the numerical analy-
lowing the quench of a binary mixtur&-B below its spin-  sis to sizes too small to make any definite answers to ques-
odal line. The properties of the resulting domain growth aretions (1)—(4) above, although much progress was made
rather well understoofiLl—3]. In the case wheréd andB are  recently[13-16.
in equal concentrations, an isotropic bicontinuous structure Second, at the theoretical level, no analytical solution of a
emerges, which is characterized by a typical length scaleeasonable model of spinodal decompositiemen neglect-
L(t) growing as a power law of time& Moreover, ag in- ing hydrodynamickis available. One then has to make some
creases, the structure evolves in a self-similar manner in thpredictions from the solution of solvable, but less realistic
sense that its statistical properties are the same when spaceni®dels, like theO(n) model in the larger limit [24], or
rescaled by (t). Any functionC(r,t) that depends on space from the approximate solution in the case of a nonconserved
and time is then a function of the reduced variaoléL (t) order paramet€el25]. A scaling argument, based on the hy-
only: C(r,t)=C(|r|/L(t)). This property is termed “dy- pothesis that a generalization of dynamic scaling holds, was
namic scaling”[1-3]. developed in Ref[12].

The study of the spinodal decomposition in a homoge- Third, there are, to our knowledge, no numerical simula-
neous shear flow is of fundamental and practical intdrgst  tions (neglecting hydrodynamig¢salidating these analytical
but despite an enormous amount of experimefgalll], nu-  predictions. Moreover, the scaling hypothesis on which the
merical [12—-23, and analytical workg4,12,24-2 the analytical argument of Ref12] is based was only tested in
problem is still not fully settled26]. Early experiments Ref.[9], with negative results. Thus the validity of the pre-
[5,6,11 and simulationg19,20,23 showed that isotropy is dicted growth laws may also be questioned. More crucially,
lost, the morphology of the bicontinuous structure beingup to now there has been no consensus concerning the nu-
elongated along the flow direction. Hence a single lengthmerically measured growth laws: we discuss this point in a
scale cannot describe the full structure. There are thus sewrore detailed way in Sec. VI.
eral questions which naturally arisd) How to characterize In this work, we numerically study the spinodal decom-
quantitatively the growing structurg2) What is the time position process in a shear flow by solving the Cahn-Hilliard
dependence of the different length scales, as compared to tleguation in two dimensions. All hydrodynamic effects are
unsheared casdg3) Does the growth stop after some time? neglected. Although this involves a drastic reduction of the
(4) Does a suitable generalization of the dynamic scalingexperimental situation, it is necessary, in our opinion, to
property hold? have a good understanding of this “simple” case before

It is interesting to remark that in spite of the large numberstudying more realistic problems. Our algorithm is different,
of works cited above, definite answers to all these questionBut our study is technically comparable to the most recent
are still lacking. Several reasons make this problem nonene[12]. However, we shall explore a wider range of shear
trivial. First, the role of hydrodynamics is far from being rates, and this will lead us to a different interpretation of the
understood. Simple physical argumef$ show that it may numerical data.
become preponderant at large times, predicting a saturation The paper is organized as follows. In Sec. I, we define
of the domains at a typical size. This assumption is resolvethe model and describe the numerical procedure to solve it.
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Section Il briefly recalls the results obtained when the shear=ssasmsasse
flow is absent. Section IV describes the morphology of the@é?ﬁéﬁ
domains under shear and its time evolution. Section V fo- —) ‘
cuses on the problem of dynamic scaling. In Sec. VI, wer :
compare our results with the relevant existing data in theé -
literature, and give a simple physical argument to explainw
them. A J

1. MODEL AND DETAILS OF THE SIMULATION FIG. 1. Snapshots of size 28&56 of the unsheared spinodal
decomposition at times=70, 381, and 3761from left to righ?.
In this work we focus on the standard model for the spin-Each color represents one phase of the mixture.
odal decomposition of binary mixtures, and numerically

solve the Cahn-Hilliard equatioi—4] with
ap(r,t) oF[ ] . g 9 d
+v-V(r,t)=TV? +p(r,t). (1 I Y S P
g o(r,0) serp Ty @ V=2 o s —).
In this expression, the order parametgfr,t) is a scalar 2 2
guantity which can be linked to the concentratmn(cg) of 2= i + i—S(t)i _ (5)
the componenf (B) of the mixture by the relatiorp=1 ax’ ay’ ax’

—2cp=2cg—1. Equation(1) has the form of a continuity

equation, which implies that the order parameter is a con- After transformation, Eq(4) is formally identical to the

served quantity. The free enerdy[¢] is of Ginzburg- Cahn-Hilliard equation without shear, which is solved by the

Landau type, implicit spectral algorithm developed in R¢R9]. Space is
measured in units of the correlation lengthalso the inter-

2 1 face width and time in units o&%/T". This microscopic time

S |VelP+ 7%= 597, 2 | ts the typical time it takes t t I

2 4 2 scale represents the typical time it takes to create a we
defined domain wall. Periodic boundary conditions are im-

where the equilibrium correlation lenghis introduced. The Posed on the deformed frame. The single parameter of the

noise termy is a random Gaussian variable, characterized bysimulation is then the shear raje which introduces a time

the two moments (7(r,t))=0 and (7(r,t)5(r',t')) scale fl. The qh0|ce of parameters for the discretization

= —2TS(t—t')V28(r—r'); Tis the temperature of the ther- Was discussed in Ref29], and the va_luesAt_=O.5, AX

mal bath. All the simulations will be carried out &=0, =Ay=0.5 are used throughout the simulation. For each

since temperature is essentially irrelevant in this prof@ss Shear rate, the system size has been carefully checked to be

(it is also known to delay the onset of the asymptotic regimdarge enough so that the reported growth laws are unaffected

[27]). The second term on the left-hand side of Bg.results by the boundaries. Since the growth is strongly anisotropic, a

from the advection of the order parameter by the velocity€ctangular simulation box has been chosen with sizes up to

field. The case of a homogeneously sheared system will bey=512 andL,=8192. The shear rates investigated in this

investigated. The flow is taken to be in thedirection, and ~Paper arey=0.04, 0.02, 0.01, 0.005, 0.0025, and 0.00125.

the velocity field is therv=yye,, which defines the shear This corresponds to a time scaje * in the rangd 25,800.

rate y. We shall concentrate on the case of a constant shei¥e Wish to emphasize that the conditign '>¢*/T" has to

F[qs]zjddr

rate. be fulfilled, since we are interested in a scaling regime where
We want then to solve the following equation numerically Well-defined domains coarsen. This remark will become im-
in two spatial dimensions: portant for the interpretation of the numerical results. An
alternative solution would be to apply the shear flow after an
d¢ d
EZ—W(?—X—FVZ(§2V2¢—¢3+ é), 3 C(r,1)

1
where both space and time dependences have been remov

for clarity. This is done by combining the numerical methods

of Refs.[28,29. A new frame &',y’) is first defined by28] 0.2
x'=x—S(t)y, y'=y, whereS(t)=[dt’ y is the strain. In  -0.2
the case of a constant shear rate, it is simply giversfy

= yt. Further definingeé(r,t)=a(r’,t), Eq. (3) becomes 40
[28]

GBI cpenn g o FIG. 2. Two-poi lation functiohEq. (6)], in the y=0
- — 33+ 4 . 2. point correlation functiofiEg. (6)], in the y=
ot VIVi$— 7+ ¢), @ case, at timé=100.
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FIG. 3. Main figure: Circularly averaged two-point correlation a:__
function of the rescaled variable|/L(t) for different times in the
range[ 50,1000. By construction, one haS(L(t),t)=0.2, and the
choice of 0.2 is indifferent. Inset: Growth laws in tkécircles and
y (triangles directions. The dashed line is a fit to a power I&}{s.

. g . . . - -

initial transient, so that large domains will have already pm—— ——  ————
grown. Such initial conditions are discussed at the end of the

paper. FIG. 4. Snapshots of sizds, =512 andL,=2048 (parts of a

512X 4096 systernfor a shear ratey=0.01, and strain§(t)=1, 5,
10, and 5Qfrom top to bottom. Each color represents one phase of
lll. ZERO SHEAR CASE the mixture.

Although the y=0 case was extensively studi¢ti—3],
we briefly consider this well-known situation with three
aims. These results are presenteditosalidate our numeri-
cal procedure(ii) present the quantities of interest, and, A. Basic observations

above all,(iii) make comparisons to the sheared case easier. The time evolution of the domains when a shear flow is

The domain growth typically takes place as in Fig. 1,55jieq is followed in Fig 4. This evolution is the basic result

where an isotropic bicontinuous structure coarsens with time,¢ previous numerical workil2—23, and shows that the
This coarsening process is well characterized by a tWO'po"lﬁomain growth is essentially unaffeéted for timesy 1
correlation function defined by

IV. ANISOTROPIC GROWTH OF THE DOMAINS
UNDER SHEAR

since the first snapshot is very similar to those in Fig. 1. At
intermediate times, the domains begin to have an anisotropic
1 shape: the average direction of the domains is clearly appar-
C(r,t)E\—/f d2x(p(x,t) p(X+T1,1)), (6) ent. This direction rotates and becomes more aligned with
the flow when the strain increases. At large timtesy 1,
domains are nearly aligned with the flow, and have a

which is nothing but the Fourier transform of the structureStrongly anisotropic shape. _ o

factor, experimentally measured through light scattering ex- These features are also clearly discernible in Fig. 5, where
periments. A typical two-point function is represented in Fig.

2, which shows the isotropy of this surface. The average C(r,t)

shape of the domains of Fig. 1 may be extracted from this
plot by taking the intersection of this surface with a horizon-

tal planez=const. This allows us to measure the time de-
pendence of the length scaRg(t) [respectivelyR (t)]ina %2
direction x (respectivelyy). Both length scales are repre- -0-2
sented in the inset of Fig. 3, and have the expected powe
law behaviorR,~Ryoct*3[1-3].

The dynamic scaling hypothesis is tested in the main -80
frame of Fig. 3, where the two-point function is circularly
averaged and plotted as a function|offL(t). This works
perfectly well. We are thus confident in our numerical setup, FIG. 5. Two-point correlation function foy=0.01 andS(t)
and we shall now address the question of the influence of the 5. The surface is stretched in thadirection. Note, in particular,
shear flow on the spinodal decomposition. that thex andy ranges are different in this figure.
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FIG. 6. Time evolution of the intersection of the two-point cor-  F|G. 7. Mean orientation of the domains as a function of the
relation with a horizontal plane, for strai®t)=5 (squarel 10  strainS(t)=yt. The straight line is Ht.
(circles, and 2Q(triangles, and a shear ratg=0.01. The points are
the data, while the lines are fits to an elliptic shape. Note, in parthe system. Physically, it can be expected that for a given
ticular, that thex andy ranges are different in this figure. shear ratey, the mean orientation of the domains is inversely

we plot the two-point correlation function for a stra@ft) ~ Proportional to the strairg(t), as would be the case for a
=5 at y=0.01. The surface is clearly stretched in the flow9id rod advected by the shear flow:
direction (compare with Fig. 2 In particular, it becomes Oo(7)
impossible to perform a circular average as in the unsheared o(t)= otY _ 7)
case: isotropy is lost. vt

The average shape of the domains is again recorded
through the intersection of the two-point correlation functionThis relation is tested in Fig. 7, whe(y) is used as an
with a horizontal plane. For definiteness, we take0.5, but  adjustable parameter. This figure shows that relatinis
the value 0.5 is unimportant. It is found numerically that thiswell satisfied in the whole range of shear rates investigated.
intersection is very well represented by an ellipse. Comput- The paramete#, is found to be a slowly increasing func-
ing the parameters of this ellipse then gives access to twtion of the shear rate. One find%(0.00125=0.975 and
typical length scalesR|(t) (large axi$ and R, (t) (small  6,(0.04)=2.0. By definition, this angle corresponds to the
axis), and to the mean orientation of the domaidét) (the  mean orientation of the domains when the strain is9d,
angle between the large axis and thirection. We present =6(t=7"1), and its variation may be understood by the
the typical time evolution of the elliptic shape of the domainsfollowing argument. For times< y~*, the domain growth is
in Fig. 6, where data are also fitted to an elliptic form in amainly unaffected by the flow, and thus, the larger the shear
very satisfactory way. These three quantities depend both orate, the smaller the domains at time y~ 1. Since large
the timet and on the shear ratg, and in the following domains are more easily deformed than small dbesause
subsections we successively study the time evolutiof(tf  of the surface tensignit is expected that, at strai®(t)~1,
and the length scale®(t) andR, (t). large domaingsmall y) are more deformed than small ones

Before performing this analysis, a remark has to be mad@arge v). Hence, the smaller the shear rate, the smajer
about the identification of the relevant length scales. It is

quite clear from the above analysis that three parameters are C. Growth laws
needed to fully characterize the growing structure under , ,
shear. This feature was already noted in experimi&h6. In We now turn to the time evolution of the two length

some of the previous numerical works, only two parameter§calesR, (t) and Ry(t). These quantities are f}“died for a
were studied, namely, length scales in ¥endy directions. ~ very broad range of shear rates frop0.04 (y *=25) to
Although these length scales should well represent the stru¢z=0-00125 y~“=800). All our results are summarized in
ture at long times, it is instead physically preferable to studyFi9- 8, whereR; andR, are represented for each value of the
the domain size in the directions defined by the arg(tg. shear rate as functions of the strain. We obtain numerically
In Ref. [15], the direction of the domains’ shape was re-that the growth laws are well represented at large strains by
corded, but there was no attempt at a quantitative analysis ¢f€ algebraic forms

its behavior. We note, finally, that this quantitative analysis _ @ _ o

of the domain morphology in two dimensions naturally RI(O=Rjo(y)™,  RL(O=R.o(y)™, ®)
arises from the analytical work of R€25], in the case of a

nonconserved order parameter. which define the growth exponenig anda, . This was first

obtained in a simulation by Padilla and Toxva¢é&®] and
subsequently in similar systems in R€f8,12,18,25.
In Fig. 8, we fit our data using form@). These fits de-
The first effect of the shear flow is to give the domains anserve some comments. The growth law fgf becomes a
anisotropic shape, and hence to create a preferred direction irice straight line in a log-log plot at large straiét) = 10.

B. Mean orientation 6(t)
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FIG. 8. The two length scalé®, (t) andR(t) are represented as functions of the strain. Each figure is labeled by the corresponding shear

rate. The symbols are the data, and the full lines are algebraic fits with the exponents indicated near each fit. For the strongest shear rates,

a horizontal dashed line has been added as a fit te 0.

Only the data points for such large strains are used to confrom an analytical study of th®(n) model and of the non-
pute the exponenty . Concerning the time behavior of conserved case may be present, but we do not expect to be
R, (t), two different fits were tested. First, a horizontal line able to determine them numerically.

corresponding tax, =0 was compared to the data. Second,

following the available analytical resulfd2,24,25, we also
tried to fit the data with the ansatz

aLZaH—l. (9)

Note that both fits are equivalent whep=1, which is

(2) Although relation(9) reasonably accounts for the data,
the valuea, =0 is also possible, and works well fail the
shear rates investigated. This means that it could be possible
to rescale all the curves fdR, (t) by plottingR, (t)/R, 5 as
a function of the strain for different shear rates, ustg as
a fitting parameter. This parameter is found to be a decreas-
ing function of the shear rate, which means that the smaller

nearly the case for the two smallest shear rates. Several corthe shear rate, the wider the domains. This rescaling is per-

ments are in order.

formed in Fig. 9, and the data are indeed compatible with

(1) The algebraic fits are clearly a very good representathis hypothesis. Let us add the remark tRaf(t) varies(at
tion of the data. Some logarithmic corrections that comemost by a factor 2 in all the simulations. This strongly sup-
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L T T T two-point correlation function has the property that it can be
1 rescaled in the form of a single variable function

cir-d {1
(r,t)y=C| —

L) (11

Ri(t)/Ruo

This indicates that (t) is the only relevant length scale in
- the asymptotic regime characterized$¥L (t). This behav-
] ior is the basis for a scaling argument which, in the un-
] sheared case, allows an elegant derivation of the growth laws
al e ] e el [30].
1 10 100 In the shear flow, there are two relevant length scales, and
7t the scaling[Eqg. (11)] can thus no longer be true. Two dif-
FIG. 9. Test of relatior{8) for the small axis of the ellipse. The ferent ger_1eralizations were SUQQESt?d by analyt_ical works.
full line represents the case, =0, whereas the dashed line is for The solution of theO(n) model predicts the scaling form
a, =1/3. The symbols are the same as in Fig. 7. The latter exponerl;124]
is clearly inconsistent with the numerical measurements for all the
shear rates. C(r,t)=C

Xy

R 'Ry’ 12

ports the hypothesis that there is in fact no growth in the
perpendicular direction. Of course, once again, logarithmigvhereR, andR, are typical sizes in the directionsandy,
corrections cannot be numerically dismissed. respectively. A different scaling is expected from the non-

(3) We do not see any evidence of the oscillations reconserved order parameter case, nani2,
ported in Refs[12,18. We do not have a clear explanation
for this, but a hypothesis is that these oscillations are a preas- cr.b) =C( N
ymptotic artifact of the measure process itself. The definition ' Ri(t) 'R.(1)
of the length scales used in R¢12] leads in some cases to
a ratio Ry(t)/Ry(t)=10 for a strainS(t)=1 [12]. For this where the subscripts refer to the rotating frame described
strain, the domains are still nearly circular; in our simula-previously. Corberet al.[12] used the form of Eq(12) as a
tions, this ratio is never above the value 1.5. However, thistarting point to generalize the argument of Bf&89] to the
argument is made weaker by the observation thateial.  sheared case. It is thus important to see if this scaling behav-
[9] used the same measurement procedure as Carbali  ior is detected in the simulation. Let us note that the tilt angle
[12] at a lower shear ratg=0.01, and did not observe any 6(t) is very small in the long time regime we are interested
oscillations. in. Then, one might ask if the difference between the forms

(4) An important point is the fact that the exponents ap-of Egs.(12) and(13) proposed above is relevant. Since the
parently depend on the value of the shear rate. More predomains are very elongated in thelirection, then even with
cisely, we find thaty| decreases from a value af=1.35at a small angle' there might be differences betweer_l the “par-
y=0.04 to one ofe=1.0 aty=0.00125. This means that allel” and x directions. Concerning and “perpendicular”
we are in fact measuringffective exponentsand that the directions, the support of the correlation function in these
true asymptotic behavior has not been reached in some of titlrections is very small, so that differences between the two
cases studied here. are indeed not observable.

The problem is then to determine which exponent is the We now present our numerical results. In Fig. 10, for two
right one. As emphasized in Sec. |, well-defined interfacedlifferent shear rates we show an attempt at a rescaling of the
exist only if y<1. This indicates that a “true” asymptotic two-point function in thex direction. In each case, we con-
behavior is reached for the smallest shear rates investigategider a time window where a hypothetical scaling might hold
and favors the valuexy=1 found for y=0.0025 and [i.e., the growth law reaches its algebraic asymptotic form,
0.00125. Together with the behavior @f and the observa- S(t)=10]. We also choos&,(t) in order to obtain the best
tion that the domains are wider at lower shear rates, we areollapse of the data. Clearly, the scalifigg. (12)] does not

led to the conclusion that the growth exponents are given byork in cases of either a high or a low shear rate.
In Fig. 11 we investigate the possibility that the second

a=1, a,=0. (10) scaling form will hold in a direction defined by the tilt angle
0(t). Here there is a clear qualitative difference between the
The analysis of dynamic scaling properties in the followingshear ratesy=0.0025 and 0.04; the collapse of the data is

: (13

section will reinforce this conclusion. excellent for the small shear rate, whereas there is a clear
systematic evolution for the highest shear rate.
V. DYNAMIC SCALING In our opinion, these results are a very good indication

that the scaling form[Eqg. (12)] does not describe the
The last question we wish to address is the problem ofsymptotic behavior of the Cahn-Hilliard equation. More-
dynamic scaling. We recall in Fig. @vhere y=0) that the over, they show that a self-similar asymptotic regime has
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FIG. 10. Test of the dynamic scaling in thedirection for FIG. 11. Test of the dynamic scaling in the “parallel” direction

y=0.04 and 0.0025. In both cases, the collapse is not satisfactoryer y=0.04 and 0.0025. The collapse is very good for 0.0025 only,
while there is a systematic evolution for 0.04.

been reached for the lowest shear rates investigated, charac-

terized by the scalingEq. (13)] of the two-point function. 1
This is also confirmed by an inspection of the scaling o(t)y=—,

properties in the parallel directigwhich is equivalent to the 4

y direction. In Fig. 12, we show the results for this direction.

Once again, the collapse is very good for the low shear rate c(r t)~C(r| re

vy=0.0025, whereas it is clearly not satisfying for a higher ' Rj(t) 'R, (1)

shear ratey=0.04.

. (14)

In particular, this asymptotic regime could not be reached for
VI. DISCUSSION the largest shear rates we have investigated. Moreover, our
attempts at detectin@n the caseg=0.04 and 0.0Ra cross-
In this paper we have investigate_-d the.orderin.g ki_netics obver from a preasymptotic regime witly>1 anda, >0
a binary mixture quenched below its spinodal line in a hotoward regime(14) were unsuccessful, because this would
mogeneous shear flow, through a numerical solution of theequire too large a system sitg. These results also dem-
Cahn-Hilliard equation in two spatial dimensions. onstrate that the domain growth does not stop under the
We have found that the bicontinuous coarsening structurghear flow, in the case where hydrodynamics is neglected
is well described by three parameters. Since the averaggnd answer then question®—(4) of Sec. I.
shape of the domains is elliptic, it is sufficient to give the  we now compare our results with previous ones. It is
lengths R, (t) and Ry(t) of the two principal axis of the jnteresting to note that, even though this simulation was not
ellipse, and the orientation of the large axis with respect tqntended to be able to reproduce experiments since hydrody-
the flow, 6(t). We have measured the time evolution of thesenamics has been neglected, our results quantitatively repro-
three quantities, defined from the two-point correlation func-guce the experiments of Chast al. [6,11] on a mixture of
tion, and all our results may be summarized by the followingwater and isobutyric acid, and those of Qitial.[21] on a
relations, which have been shown to hold in the asymptotigolymer blend of polystyrene and polyinyl methyl ethey,

regime of large times: for the three quantities describing the morphology of the
domains. These experiments were probably done in a regime
Ri(t)=1t, where hydrodynamic effects are negligible, since other ex-
periments by Hashimoto and co-work¢ird reported a satu-
R, (t)=const, ration of the domains to &-dependent size. This stationary
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clearly demonstrated this could be a key point in understand-
ing the scaling properties of the system. One might also
question the validity of a renormalization-group type argu-
sk x i ment in the case where the exponentis zero, since, upon
- space rescaling, domains become thinner and thinner. Re-
04k % - cently[25], an approximate solution of the case of a noncon-
by served order parameter was found, predicting the scaling
02 L . [Eqg. (13)] in two spatial dimensions. However, extending

¢ Laasssssasa, this solution to the conserved case is certainly a very hard

ERNCFIIIRGFUEOLR0 a0k, since in the unsheared case the conservation law al-

0.2 L ! I ! 0SS ready makes the calculations very invol&.
0 1 2 3 4 5 6 We are then faced with the problem of having numerical
ri/RL(8) results that cannot be understood within an existing analyti-
cal framework. We now give a simple physical argument
leading to Egs(14), inspired by the original argument given
by Huse[31] to describe the zero-shear case. The spinodal
decomposition under a shear flow results basically from two
competing effects.

(i) The advection of the order parameter, which becomes
efficient for timest=+ !, deforms the nearly circular do-
mains existing at timé~y~ 1. It is very easy to compute
that, with advection only, a circular domain is deformed into
an elliptic shape with principal axes scaling at large strain as
R, (t)~(yt)"! and Ri(t)~~t, with a tilt angle 6(t)

0.4 1 1 1 1 — ( 'yt) —1.

(ii) The domain growth arises because of the existence of
a gradient of the chemical potential=6F/5¢. This force

FIG. 12. Test of the dynamic scaling in the parallet equiva-  gives rise to currents which make an interface of curvaRire
lently y) direction for y=0.04 and 0.0025. The collapse is very move with a velocitydR/dt« 1/R?. This interface motion
good for the lowest shear rate. results, in the absence of shear, to a coarsening of the domain

structure[31]. Here we modify this argument by taking into
steady state has been termed a “string phase,” and was al@scount the fact that the structure is no longer isotropic.
observed by Hobbiet al.[8] in a strong shear rate regime. While the domain growth does not affect the tilt anglg),

Our numerical findings can be compared with previousit leads to two different interface velocities, namely,
works neglecting hydrodynamics, and our results for thedRH/dtfv—llRf andde/dt~+1/Rﬁ.
growth laws are similar to those found by Qual.[21] and With the strong assumption that a balance can be made
Corberiet al. [12]. Note that in this last referendé?2], the  between these two effects, this leads to the following equa-
growth laws were compatible with regim@4), although tions for the the three parameters of the ellipse:
they are compared with the behavidRg(t) ~t** and Ry(t)

1 T T T T

08 | y=004 vt =60

P4don

C(r,t)

C(r,t)

TJ_/RJ_(t)

~113 However, the authors admitted that the latter regime dRy (1) 1 1

was not reached within the numerical time window. Earlier at " 2° (15
. . —< e Ryt

simulations were not able to be very quantitative

[19,20,22,23 although Padilla and Toxvaef@2] suggested dRi(t 1

that the anisotropic domain growth was well described by Ry( ):+ — (16)

algebraic laws. This is, to our knowledge, the first time that dt Rl(t)z'

the elliptic average shape of the domains was systematically

investigated in a numerical experiment. Concerning the scal- 1

ing of the the two-point correlation function, Qat al. [21] o(t) = % 17

showed that form(12) is not appropriate, but they did not

investigate form(13). which indeed imply Eqs(14). Although simple and heuris-

Analytically, the known results in the case of a conservedic, this argument in fact captures the essence of the coars-
order parameter are for ti@(n) model, which was solved ening process under a shear flow. It should correctly describe
with shear in the large-limit [24] (also see Ref.18]). The  the domain growth when the domains are quite large. Other-
second result stems from a scaling argument developed hyise, the notion of interface velocity is meaningless. How-
Corberiet al.[12]. Both predict that the growth laws should ever, it is quite clear that subtleties, such as logarithmic cor-
beR,(t)~t**andR(t)~t*3 with a scaling form folC(r,t)  rections that exist in more involved computatid2s], will
as in Eq.(12). Our results do not corroborate these predic-not be captured by such a naive argument.
tions. A reason for this may be that these results do not take Let us note that when it is applied to the nonconserved
into account the elliptic shape of the domains, and we havease, this argument leads to the growth l&ys-const and
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1000 prr o creases Thus the second term on the right-hand side of Eq.

Ry - (16) becomes important and the growthRf is slower than
1 for a direct quench in the flow. This initial behavior is quali-
- tatively different from the previous case, and after this un-
E usual transient the growth becomes similar to the growth
studied previously. This predicted behavior agrees satisfac-
torily with the corresponding numerical experiment, as can
be seen in Fig. 13. Note, in particular, that the slope of the
curve Ry(t) is minimum whenR, (t) reaches its smallest
value, as can also be deduced from Elf).
N o o - In conclusion, we hope this work has clarified several
1 10 100 1000 issues concerning spinodal decomposition in a shear flow. It
7t would be very interesting to perform the same measurements
in three dimensions, since the analytical approach of Ref.
25] shows that dynamic scaling properties might be differ-
ent in two and three dimensions. Of course, the ribid)
roblem is to have a better understanding of the effect of
ydrodynamics on the phase separation in a shear flow.

100

10

FIG. 13. Time evolution of the two length scales as a function of
the strain when the system is first allowed to grow without sheal
during a timet=400, and then submitted to a shear flow with
=0.04. As a visual guide we have added a horizontal dashed Iin%
and the data foR(t) for a direct quench in the shear fldfowest
R curve.
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